您现在的位置是: 首页 > 车型推荐 车型推荐

车用制动器国内外发展现状_汽车制动器发展历程

tamoadmin 2024-06-10 人已围观

简介1.汽车ABS故障诊断与概述2.分析汽车制动过程的三种情况3.大货车(气刹车)的刹车零件名称4.ABS的工作原理及过程?制动系统一般由制动操纵机构和制动器两个主要部分组成。制动操纵机构产生制动动作、控制制动效果并将制动能量传输到制动器制动系统的各个部件,制动器产生阻碍车辆的运动或运动趋势的力的部件。1.汽车刹车踏板在方向盘下面,踩住刹车踏板,则使刹车杠杆联动受压并传至到刹车鼓上的刹车片卡住刹车轮盘

1.汽车ABS故障诊断与概述

2.分析汽车制动过程的三种情况

3.大货车(气刹车)的刹车零件名称

4.ABS的工作原理及过程?

车用制动器国内外发展现状_汽车制动器发展历程

制动系统一般由制动操纵机构和制动器两个主要部分组成。制动操纵机构产生制动动作、控制制动效果并将制动能量传输到制动器制动系统的各个部件,制动器产生阻碍车辆的运动或运动趋势的力的部件。

1.汽车刹车踏板在方向盘下面,踩住刹车踏板,则使刹车杠杆联动受压并传至到刹车鼓上的刹车片卡住刹车轮盘,使汽车减速或停止运行。汽车手动刹车是在排挡旁,连于刹车杠。常见的还有自行车刹车,它是靠固定在车架上的杆状制动器或者盘装抱刹制动器等来进行减速的。

2.刹车是靠刹车片与刹车鼓之间的激烈磨擦来完成的。

3.刹车作用的原理是把车子的动能转化为热能消耗掉,而动能来自于发动机提供的动力,需要燃料燃烧做功来提供,也就是说你踩一次刹车就意味着你的汽油要浪费一点。所以,请你一定记住第一条:开车尽可能少踩刹车,刹车只是为了舒适或者紧急情况下不得不采用的方法。

4.刹车有很多都是不得已而为之的紧急刹车,此时就必须注意刹车的技巧了。这里分两种情况讨论,一是不带有ABS防抱死刹车系统的车辆,老式的车辆基本都是这样的。这种车辆在遇到紧急刹车的时候,如果刹车力度过大则可能使车子轮胎抱死(轮胎完全不转动),我们在公路上经常可以看到拖得很长的两条黑色刹车痕,这就是没有ABS的汽车刹车时轮胎与地面摩擦的痕迹,轮胎由于紧急制动导致轮胎抱死以后不再转动,但巨大的惯性会使车子的轮胎磨擦着地面继续向前滑动,轮胎与地面剧烈摩擦导致轮胎上磨擦掉的橡胶粒产生了一条黑色的痕迹。此时如果强行打方向往往会产生跑偏侧滑甩尾甚至侧翻失控等严重后果。

汽车ABS故障诊断与概述

1855 年,法国物理学家LeonFoucauit先生发现了电涡流现象。1903年,法国工程师STECKEL先生申报了世界上第一个电涡流缓速器专利。从20 世纪30年代开始,欧洲一些厂商对山区和事故多发地区行驶的商用车使用缓速器的必要性已比较重视。但直到1936 年,法国JOURDAIN MONNERET 公司才根据法国工程师RaoulSARAZIN的另一项电涡流缓速器专利生产了世界上第一台电涡流缓速器。由于第二次世界大战的原因,缓速器的研发和应用被迫停止。战后,法国TELMA公司正式购买了Raoul SARAZIN的电涡流缓速器专利并开始大批量生产电涡流缓速器。并且先后推出了装在传动轴上的A系列缓速器和装在变速箱和后桥上的F系列缓速器,使缓速器不仅通过对汽车行驶的安全可靠性,也通过减少汽车刹车蹄块和轮毂的磨损及维修费用的降低所展示的经济性,从而得到汽车厂家和汽车用户的接受、认可和欢迎。而JOURDAIN MONNERET 公司因专利侵权行为受到司法判决于1951年停止生产缓速器。与此同时,在欧美国家,其他形式的汽车辅助制动装置如发动机缓速器和液力缓速器也相继问世并得到发展和应用。  对商用车而言,随着汽车发动机功率的增高、发动机转速的降低、车速的加快和车载质量的提高,汽车行驶的安全问题变得异常严峻。 汽车的主制动方式仍然为摩擦制动,尽管制动蹄块和轮毂的摩擦性能的改善对一次性刹车距离的缩短有所进步,但对长时间或距离下坡和频繁制动的情况,其制动耐久性并无明显改观。许多先进的电子技术如制动防抱系统ABS、电子制动系统EBS 以及拖动控制系统ASR 的采用在摩擦制动系统的有效能力范围内使其可靠性大大提高,但对制动器的温度过高和制动器的磨损却无帮助。

分析汽车制动过程的三种情况

汽车ABS故障诊断与概述一、ABS防抱制动系统系统概述

随着世界汽车工业的迅猛发展,舒适性日益成为人们选购汽车的重要依据。目前广泛采用的防抱制动系统(ABS)使人们对安全性要求得以充分的满足。

汽车制动防抱系统,简称为ABS,是提高汽车被动安全性的一个重要装置。有人说制动防抱系统是汽车安全措施中继安全带之后的又一重大进展。汽车制动系统是汽车上关系到乘客安全性最重要的二个系统之一。随着世界汽车工业的迅猛发展,汽车的安全性越来越为人们重视。汽车制动防抱系统,是提高汽车制动安全性的又一重大进步。

ABS防抱制动系统由汽车微电脑控制,当车辆制动时,它能使车轮保持转动,从而帮助驾驶员控制车辆达到安全的停车。这种防抱制动系统是用速度传感器检测车轮速度,然后把车轮速度信号传送到微电脑里,微电脑根据输入车轮速度,通过重复地减少或增加在轮子上的制动压力来控制车轮的打滑率,保持车轮转动。在制动过程中保持车轮转动,不但可保证控制行驶方向的能力,而且,在大部分路面情况下,与抱死〔锁死〕车轮相比,能提供更高的制动力量。

ABS与常规的液压制动系统相比有三个显著的扰点:

1.车辆控制--装备有ABS的汽车驾驶员在紧急制动过程中,保持着很大程度的操纵控制。在紧急制动过程中,用标淮的液压制动器产生的打滑使驾驶员失去对车辆的控制。ABS恢复稳定性并使驾驶员恢复对车辆的控制。

2.减少浮滑现象--潮湿、光滑道路和抱死车辆纵使形成被称为浮滑现象的状态,当车辆驾驶员行驶在具有一层水和油薄模的路面之上时,出现与浮滑现象相仿。由于ABS减少了车轮抱死的机会,因此,也减少了制动过程中出现浮滑现象的机会。改善了轮胎的磨损--使用ABS防止车轮抱死,消除了在紧急制动过程中轮胎平斑的可能性。

二、ABS发展历程

ABS系统的发展可以追溯到本世纪初期,早在1928年制动防抱理论就被提出,在30年代机械式制动防抱系统就开始在火车和飞机上获得应用,博世(BOSCH)公司在1936年第一个获得了用电磁式车轮转速传感器获取车轮转速的制动防抱系统的专利权。

进入50年代,汽车制动防抱系统开始受到较为广泛的关注。福特(FORD)公司曾于1954年将飞机的制动防抱系统移置在林肯(LINCOIN)轿车上,凯尔塞.海伊斯(KELSEHAYES)公司在1957年对称为"AUTOMATIC"的制动防抱系统进行了试验研究,研究结果表明制动防抱系统确实可以在制动过程中防止汽车失去方向控制,并且能够缩短制动距离;克莱斯勒(CHRYSLER)公司在这一时期也对称为"SKID

CONTROL"的制动防抱系统进行了试验研究。由于这一时期的各种制动防抱系统采用的都是机械式车轮转速传感器的机械式制动压力调节装置,因此,获取的车轮转速信号不够精确,制动压力调节的适时性和精确性也难于保证,控制效果并不理想。

随着电子技术的发展,电子控制制动防抱系统的发展成为可能。在60年代后期和70年代初期,一些电子控制的制动防抱系统开始进入产品化阶段。凯尔塞.海伊斯公司在1968年研制生产了称为"SURE

TRACK"两轮制动防抱系统,该系统由电子控制装置根据电磁式转速传感器输入的后轮转速信号,对制动过程中后轮的运动状态进行判定,通过控制由真空驱动的制动压力调节装置对后制动轮缸的制动压力进行调节,并在1969年被福特公司装备在雷鸟(THUNDERBIRD)和大陆.马克III(CONTINENTALMKIII)轿车上。

克莱斯勒公司与本迪克斯(BENDIX)公司合作研制的称为"SURE-TRACK"的能防止4个车轮被制动抱死的系统,在1971年开始装备帝国(IMPERIAL)轿车,其结构原理与凯尔塞.海伊斯的"SURE-TRACK"基本相同,两者不同之处,只是在于两个还是四个车轮有防抱制动。博世公司和泰威士(TEVES)公司在这一时期也都研制了各自第一代电子控制制动防抱系统,这两种制动防抱系统都是由电子控制装置对设置在制动管路中的电磁阀进行控制,直接对各制动轮以电子控制压力进行调节。

别克(BUICK)公司在1971年研制了由电子控制装置自动中断发动机点火,以减小发动机输出转矩,防止驱动车轮发生滑转的驱动防抱转系统.

瓦布科(WABCO)公司与奔驰(BENZ)公司合作,在1975年首次将制动防抱系统装备在气压制动的载贷汽车上。

这一时期的各种ABS系统都是采用模拟式电子控制装置,由于模拟式电子控制装置存在着反应速慢、控制精度低、易受干扰等缺陷,致使各种ABS系统均末达到预期的控制效果,所以,这些防抱控制系统很快就不再被采用了。

进入70年代后期,数字式电子技术和大规模集成电路的迅速发展,为ABS系统向实用化发展奠定了技术基础。博世公司在1978年首先推出了采用数字式电子控制装置的制动防泡系统--博世ABS2,并且装置在奔驰轿车上,由此揭开了现代ABS系统发展的序幕。尽管博世ABS2的电子控制装置仍然是由分离元件组成的控制装置,但由于数字式电子控制装置与模拟式电子控制装置相比,其反应速度、控制精度和可靠性都显著提高,因此,博世ABS2的控制效果己相当理想。从此之后,欧、美、日的许多制动器专业公司和汽车公司相继研制了形式多详的ABS系统。

三、ABS的基本工作原理

控制装置和ABS警示灯等组成,在不同的ABS系统中,制动压力调节装置的结构形式和工作原理往往不同,电子控制装置的内部结构和控制逻辑也可能ABS通常都由车轮转速传感器、制动压力调节装置、电子不尽相同。

在常见的ABS系统中,每个车轮上各安装一个转速传感器,将有关各车轮转速的信号输入电子控制装置。电子控制装置根据各车轮转速传感器输入的信号对各个车轮的运动状态进行监测和判定,并形成相应的控制指令。制动压力调节装置主要由调压电磁阀组成,电动泵组成和储液器等组成一个独立的整体,通过制动管路与制动主缸和各制动轮缸相连。制动压力调节装置受电子控制装置的控制,对各制动轮缸的制动压力进行调节。

ABS的工作过程可以分为常规制动,制动压力保持制动压力减小和制动压力增大等阶段。在常规制动阶段,ABS并不介入制动压力控制,调压电磁阀总成中的各进液电磁阀均不通电而处于开启状态,各出液电磁阀均不通电而处于关闭状态,电动泵也不通电运转,制动主缸至各制动轮缸的制动管路均处于沟通状态,而各制动轮缸至储液器的制动管路均处于封闭状态,各制动轮缸的制动压力将随制动主缸的输出压力而变化,此时的制动过程与常规制动系统的制动过程完全相同。

在制动过程中,电子控制装置根据车轮转速传感器输入的车轮转速信号判定有车轮趋于抱死时,ABS就进入防抱制动压力调节过程。例如,电子控制装置判定右前轮趋于抱死时,电子控制装置就使控制右前轮刮动压力的进液电磁阀通电,使右前进液电磁阀转入关闭状态,制动主缸输出的制动液不再进入右前制动轮缸,此时,右前出液电磁阀仍末通电而处于关闭状态,右前制动轮缸中的制动液也不会流出,右前制动轮缸的刮动压力就保持一定,而其它末趋于抱死车轮的制动压力仍会随制动主缸输出压力的增大而增大;如果在右前制动轮缸的制动压力保持一定时,电子控制装置判定右前轮仍然趋于抱死,电子控制装置又使右前出液电磁阀也通电而转入开启状态,右前制动轮缸中的部分制动波就会经过处于开启状态的出液电磁阀流回储液器,使右前制动轮缸的制动压力迅速减小右前轮的抱死趋势将开始消除,随着右前制动轮缸制动压力的减小,右前轮会在汽车惯性力的作用下逐渐加速;当电子控制装置根据车轮转速传感器输入的信号判定右前轮的抱死趋势已经完全消除时,电子控制装置就使右前进液电磁阀和出液电磁阀都断电,使进液电磁阀转入开启状态,使出液电磁阀转入关闭状态,同时也使电动泵通电运转,向制动轮缸泵输送制动液,由制动主缸输出的制动液经电磁阀进入右前制动轮缸,使右前制动轮缸的制动压力迅速增大,右前轮又开抬减速转动。

ABS通过使趋于抱死车轮的制动压力循环往复而将趋于防抱车轮的滑动率控制,在峰值附着系数滑动率的附近范围内,直至汽车速度减小至很低或者制动主缸的常出压力不再使车轮趋于抱死时为止。制动压力调节循环的频率可达3~20HZ。在该ABS中对应于每个制动轮缸各有对进液和出液电磁阀,可由电子控制装置分别进行控制,因此,各制动轮缸的制动压力能够被独立地调节,从而使四个车轮都不发生制动抱死现象。

尽管各种ABS的结构形式和工作过程并不完全相同,但都是通过对趋于抱死车轮的制动压力进行自适应循环调节,来防止被控制车轮发生制动抱死。

四、ABS系统的维护与检修注意事项

(一).使用与维修中的一般性注意事项

目前,大多数ABS系统都具有很高的工作可靠性,通常无需对其进行定期的特别维护,但在使用、维护和检修过程中,应在以下几个方面特别注意:

1.在点火开关处于点火位置时,不要拆装系统中的电器元件和线束插头,以免损坏电子控制装置。要拆装系统中的电器元件和线束插头,应先将点火开关断开。

2.不可向电子控制装置供给过高的电压,否则容易损坏电子控制装置,所以,切不可用充电机起动发动机,也不要在蓄电池与汽车电系连接的情况下,对蓄电池进行充电。

3.子控制装置受到碰撞敲击也极容易引起损环,因此,要注意使电子控制装置免受碰撞和敲击。

4.高温环境也容易损坏电子控制装置,所以,在对汽车进行烤漆作业时,应将电子控制装置从车上拆下。另外,在对系统中的元件或线路迸行焊接时,也应将线束插头从电子控制装置上拆下。

5.不要让油污沾染电子控制装置,特别是电子控制装置的瑞子更要注意;否则,会使线束插头的瑞子接触不良。

6.在续电池电压低时,系统将不能进入工作状态,因此,要注意对蓄电池的电压进行检查,特别是当汽车长时间停驶后初次启动时更要注意。

7.不要使车轮转速传感器和传感器齿圈沾染油污或其它脏物;否则,车轮转速传感器产生的车轮转速信号就可能不够准确。影响系统控制精度,甚至使系统无法正常工作。另外,不要敲击转速传感器;否则,很容易导致传感器发生消磁现象,从而影响系统的正常工作。

8.由于在很多具有防抱制动功能的制动系统中都有供给防抱制动压力调节所蓄能量的蓄能器。所以,在对这类制动系统的液压系统进行维修作业时,应首先使蓄能器中的高压制动液完全释放。以免高压制动液喷出伤人。在释放蓄能器中的高压制动液时,先将点火开关断开,然后反复地踩下和放松制动踏板,直到制动踏板变得很硬时为止。另外,在制动液压系统完全装好以前,不能接通点火开关,以免电动泵通电运转。

9.具有防抱控制功能的制动系统应佳用专用的富路因为制动系统往往具有很高的压力,如果使用非专用的管路,极易造成损坏。

10.大多数防抱控制系统中的车轮转速传感器,电子控制装置和制动压力调节装置都是不可修复的,如果发生损坏,应该进行整体更换。

11.在对制动液压系统进行过维修以后,或者在使用过程中发觉制动踏板变软时,应按照要求的方法和顺序对制动系统进行空气排除。

12.应尽量选用汽车生产厂推荐的轮胎,如要使用其它型号的轮胎,应该选用与原车所用轮始的外径,附着性能和转动惯量相近的轮胎,但不能混用不同规格的轮胎,因为这详会影响防抱控制系统控制效果。

在防抱警示灯持续点亮情况下进行制动时,应注意控制制动强度,以免因制动防抱系统失效而使车轮过早发生制动抱死。

(二).制动液的选用、更换及补充

1.在具有防抱控制功能的制动系统中,制动液的通路更长,更曲折,致使制动液在流动过程中受到的阻力较大,另外,在具有防抱控制功能的制动系统中,运动零件更多、更精密、这些运动对润滑的要求也更高,因此,具有防抱控制功能的制动系统所选用的制动液必须具有恰当的粘度。

2.在具有防抱控制功能的制动系统中,制动液反复经历压力增大和减小的循环,因而,制动液的工作温度和压力较常规制动系统中的制动液更高,这就要求制动液具有更强的抗氧化性能,以免制动液中形成胶质、沉积物和腐蚀性物质。

3.在具有防抱控制功能的制动系统中有更多的橡胶密封件和橡胶软管,这就要求所选用的制动液不能对橡胶件产生较强的膨胀作用。

4.在具有防抱控制功能的制动系统中有更多、更为精密的金属零件,因此,要求所选用的制动液对金属的腐蚀性较弱。

由于具有防抱控制功能的制动系统在制动过程中会使制动液的温度升高很快,这就要求所选用的制动液具有较高的沸点,以免因制动液发生汽化使制动系统产生气阻。

根据以上特点,具有防抱控制功能都推荐选用DOT3或DOT4的制动液。尽管DOT5的制动液具有更高的沸点,但是,由于DOT5是硅基制动液,会对橡胶件产生较强的损害,因此,在具有防抱控制功能的制动系统中,一般不推荐选用DOT5的制动液。

由于DOT3和DOT4是醇基制动夜,具有较强的吸湿性,随着使用时间的延长,其中的含水量会不渐增多。当制动液中含有较多的水分时,不仅会使制动压力调节装置中的精密零件发生锈蚀,还使制动液的粘度变大,影响制动系统中的流动,特别是在寒冷的气侯条件下迟缓,导致制动距离的延长。另外,制动液中的含水量会对制动液的沸点产生非常明显的影响。所以,随着制动液中含水量的增多,制动系统就很容易发生气阻象。DOT3和DOT4制动液一般经过12个月的使用以后,其中的含水量平均可达3%,因此,建议对具有防抱控制功能的制动系统每隔12个月更换一次制动液。

在对具有液压动力或助力的制动系统进行制动液更换或补充时,由于蓄能器中可能蓄存有制动液,因此,在更换或补充制动液时应按如下程序进行:

1.将新制动液加到储液室的最高液位标记处;

2.如果需要对制动系统中的空气进行排除,应按规定的程序进行;

3.将点火开关置于点火位置,反复地踩下和放松制动踏板,直到电动泵开始运转为止;

4.待电动泵停止运转后,储液室中的液位进行检查;

5.如果储液室中的制动液液位在最高液位标记以上,先不要泄放过多的制动液,而应重复上述的第3和第4步骤;

如储液室中的制动液液位在最高液位标记以下,应向储液室再次补充新的制动液,使储液室中的制动液位达到最高标记处,但切不可将制动液加注到超过储液室的最高液位标记,否则,当蓄能器的制动液排出时,制动液可能会溢出储液室。

在具有防抱控制功能的制动系统中,防抱控制系统的电子控制装制通常根据液位开关输入的信号对储液室的制动液液位进行监测。当制动液液位过低时,防抱控制系统将会自动关闭,因此,应定期对储液室中的制动液液位进行检查,并及时补充制动液。

五、ABS故障诊断步骤

(一).ABS故障诊断仪器和工具

在多数防抱控制系统中,可以通过跨接诊断座串相应的端子,根据防抱警示(或电子控制装置的发光二极管)的闪烁情况读取故障代码。所以,在故障代码读取时,往往需要合适的跨接线,跨接线是两端带有插接端子的一段导线,也有的跨接线在中间设有保险管。

故障代码只是代表故障情况的一系列数码,要确切地了解故障情况,还须根据维修手册查对故障代码所代表的故障情况。另外,要正确地对系统进行故障诊断的排除,也需要利用维修手册作参考,因此,维修手册是故障诊断和维修过程中最为重要的工具。

对防抱控制系统进行检查时,万用表是基本的测试工具,由于指针式万用表能够反应电参数的动态变化,所以更适合于是防抱控制系统的电路检查。另外,也可以用一些更为专用的电参数测试器(如多踪示波器等),可更为方便和更为深入地对系统进行检查。

在大部分汽车上,防抱控制系统电子控制装置线束插头都不好接近,速成插头中的端子又没有标号,使确定所要测试的端子变得较为困难,特别是当向一些特定的端子加入电压时,如果电压加入有误,可能会损坏系统中的一些电气元件,另外,如果直接从线束插头的端子上对系统进行测试,不影响测试结果的准确性,可能还会使端子发生变形或破坏,为此,可以使用接线端子盒。由于各种防抱控制系统线束插头中的端子数,端号排列、插头形式不尽相同,因此,所用的接线端子盒也就不同。

对防抱控制系统进行电路测试时,将系统的线束插头从电子控制装置上卸下,再将接线端子盒的线束插头与系统线束插头插接,这祥,接线端子盒子的端子标号就与系统线束端子标号相对应,通过对接线端子盒上端子的测试,就相当于求系统线束插头中相应端子进行测试。

在对防抱控制系统的液压装置进行检查时,有时需要使用压力表。对防抱控制系统进行故障诊断时,也可以借助各种测试仪器,有些系统甚至只有用专用诊端测试仪才能进行故障诊断。专用诊断测试仪器可分为两大类,其中一类可以替代系统的电子控制装置,对系统工作情况进行检查和模拟,这类仪器有博世ABS诊断测试器和丰田ABS诊断测试器。另一类诊断测试器则需要系统的端子控制装置通过与系统的电子控制装置进行双向通讯。既能读取系统工电子控制装置所存储记忆的故障代码,并将故障代码转换为故障情况后显示,部分地替代了维修手册的作用,又可向系统电子控制半装置传输控制指令,对系统进行工作模拟。这类测试仪器有SNAP-ON红盒子扫描仪SCANNER及通用的TECH-L和克莱斯的ORB-LL等,这些诊断测试仪器因可以读解故障代码,一般称为解码器。解码器不仅可以对防抱控制系统进行故障诊断,而且还可以对汽车的其它一些电控制系统进行诊断测试,只是需要选择相应的软件而已。

(二).故障诊断与排除的一般步骤

当防抱控制系统警示灯持续点亮时,或感觉防抱控制系统工作不正常时,应及时对系统进行故障诊断和排除。在故障诊断和排除。在故障诊断和排除时应该按照一定的步骤进行,才能取得良好的效果。故障诊断与排除的一般步骤如下:

1.确认故障情况和故障症状;

2.对系统进行直观检查,检查是否有的制动液泻漏`导线破损、插头松脱、制动液液位过低等现象;

3.读解故障代码,既可以用解码器直接读解,也可以通过警示灯读取故障代码后,再根据维修手册查找故障代码所代表的故障情况。

4.根据读解的故障情况,利用必要的工具和仪器对故障部位进行深入检查,确诊故障部位和故障原因;

5.故障排除;

6.清除故障代码;

7.检查警示灯是否仍然持续点亮,如果警示灯仍然持续点亮,可能是系统中仍有故障存在,也有可能是故障己经排除,而故障代码未被清除;

警示灯不再电亮后,进行路试,确认系统是否恢复工作。

在故障诊断和维修过程中,应当注意,不仅不同型号的汽车所装备的防抱系统可能不同,而且即使是同一型号的汽车,由于生产年份不同其装备的防抱控制系统也可能不同。

防抱控制系统的故障大多是由于系统内的接线插头松脱或接触不良、导线断路或短路、电磁阀线圈断路或短路、电动泵电路断路或短路、车轮转速传感器电磁线断路或短路、续电器内部断路或短路,以及制动开关、液位开关和压力开关等不能正常工作引起的。另外,蓄电池电压过低、车轮转速传感器与齿圈之间的间隙过大或受到泥污沾染、储液室液位过低等也会影响系统的正常工作。

大货车(气刹车)的刹车零件名称

汽车制动系统是指对汽车的某些部位(关键是车轮)施加必要的力,使其能被强制制动到必要程度的一系列特殊装置。制动系统的作用是:使行驶的汽车跟随驾驶员的要求,做强制减速甚至停车;在各种路况(包括坡道)下,使停车的停车场平稳;保持汽车下坡行驶的速度稳定。随后,汽车编辑耐心地向朋友们介绍了分析汽车制动过程的三种情况。

简介

作用在汽车上的与汽车行驶方向相反的外力只能用来响应汽车的启动,而这些外力的大小基本上是随机的、不可调节的,因此必须在汽车上安装一系列特殊装置才能实现上述功能。

汽车制动系统是指为了在技术上保证汽车安全行驶,提高汽车平均速度,在汽车上安装制动装置的专用制动机构。汽车制动系统大部分包括两个独立的装置,即起步制动装置和停车制动装置。行车制动装置是由驾驶员的脚操作的,所以也叫脚制动装置。驻车制动装置由驾驶员的手操作,因此也称为手制动装置。

行车制动装置的作用是使行驶的汽车减速或在最短的距离内停车。驻车制动装置的作用是使停在各种道路上的汽车保持静止。然而,有时在紧急情况下,可以同时使用两种制动装置来增加汽车的制动效果。一些专用汽车和经常在山区行驶的汽车,长时间频繁的制动会影响启动制动装置的过热,所以这些汽车经常会配备各种类型的摊铺制动装置,以稳定下坡时的速度。

根据制动能量情况,制动系统还可以包括三种类型:手动制动系统、动态制动系统和伺服制动系统。人力制动系统以驾驶员的体力为制动能量;制动系统以发动机动力转换的气压或液压作为制动能量;伺服制动系统利用人力和发动机动力作为制动能量。此外,按照制动能量的传递方式,制动系统可以包括机械、液压、气动和电磁等。

在汽车制动系统中,制动器是汽车制动系统中用来使汽车停止运动或运动趋势的力的部件。汽车上使用的制动器基本上都是摩擦制动器,即阻止汽车运动的制动力矩来自于固定元件与旋转工作面之间的摩擦。

形式分类

鼓式制动器

鼓式制动是一种传统的制动方式,其工作原理可以形象地描述为咖啡杯。刹车鼓就像一个咖啡杯。当你把五个手指放进旋转的咖啡杯里,你的手指就是刹车片。只要手指向外指,摩擦咖啡杯内壁,咖啡杯就会停止转动。简单来说,汽车上的鼓式制动器由制动油泵、活塞、刹车片和鼓室组成。制动时,活塞被制动缸的高压制动油推动。对吧

盘式制动器

近年来,汽车的速度不断提高,卡车和公共汽车的总重量也在不断增加。此外,汽车重心普遍下降,小直径、宽截面轮胎广泛使用,限制了制动器的安装位置。因此,在重型卡车和轿车上使用制动热稳定性更好的盘式制动器的情况日益增多。盘式制动器可以包括卡钳盘式制动器和全盘式制动器。

盘式制动器也叫盘式制动器,它的工作原理可以用一个圆盘来描述。当您用拇指和食指捏住转盘时,盘式制动器将停止旋转。汽车上的盘式制动器由制动油泵、连接到车轮上的制动盘和制动盘上的制动钳组成。制动时,高压制动油推动卡钳内的活塞,将制动蹄压向制动盘,会造成制动效果。

盘式制动器盘式制动器有时也称为盘式制动器。分为普通盘式制动器和通风盘式制动器。

通风盘式制动器是在两个制动盘之间预留一个空的间隙,使气流可以通过空的间隙。有些通风盘还在盘面上钻许多圆形通风孔,或在盘面上切割通风槽或预制矩形通风孔。在气流的帮助下,通风盘式制动器比普通盘式制动器需要更好的冷却和加热效果。盘式制动器的关键优势在于高速制动时能快速制动,散热效果优于鼓式制动器,制动效率不变,且便于安装ABS等先进电子设备。鼓式制动器的关键优点是闸瓦磨损少,成本较低,易于维修。由于鼓式制动器的绝对制动力远高于盘式制动器,所以广泛应用于后轮驱动的卡车上。

好了,今天汽车小编的朋友们简单介绍了这么多分析汽车制动过程的三种情况。不知道小伙伴们听完汽车小编的简单介绍,对分析汽车制动过程的三种情况有没有更深入的了解。希望边肖汽车的简介能对朋友们有所帮助。如果你想了解更多的知识,那就关注这个网站。边肖车在这里等你!

百万购车补贴

ABS的工作原理及过程?

主要器件有 推杆、压力弹簧两对、皮碗、气缸组成。

由压力弹簧压住皮碗带动推杆进行制动,在没有气压的情况下就是制动的状态。等车启动,充足气压刹车就可以恢复到可行走状态,刹车就是通过气压阀门来断开气压,利用弹簧的压力来进行制动的。所以,是断气刹车的都要充足气压才能行驶。这种刹车比较安全,坏了就是刹住的。除非里面的弹簧断了,但里面的弹簧是有好几根的,一般最起码有两根。

鼓式制动也叫块式制动,是靠制动块在制动轮上压紧来实现刹车的。鼓式制动是早期设计的制动系统,其刹车鼓的设计1902年就已经使用在马车上了,直到1920年左右才开始在汽车工业广泛应用。现在鼓式制动器的主流是内张式,它的制动块(刹车蹄)位于制动轮内侧,在刹车的时候制动块向外张开,摩擦制动轮的内侧,达到刹车的目的。 相对于盘式制动器来说,鼓式制动器的制动效能和散热性都要差许多,鼓式制动器的制动力稳定性差,在不同路面上制动力变化很大,不易于掌控。而由于散热性能差,在制动过程中会聚集大量的热量。制动块和轮鼓在高温影响下较易发生极为复杂的变形,容易产生制动衰退和振抖现象,引起制动效率下降。另外,鼓式制动器在使用一段时间后,要定期调校刹车蹄的空隙,甚至要把整个刹车鼓拆出清理累积在内的刹车粉。当然,鼓式制动器也并非一无是处,它造价便宜,而且符合传统设计。 四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%-80%,前轮制动力要比后轮大,后轮起辅助制动作用,因此轿车生产厂家为了节省成本,就采用前盘后鼓的制动方式。不过对于重型车来说,由于车速一般不是很高,刹车蹄的耐用程度也比盘式制动器高,因此许多重型车至今仍使用四轮鼓式的设计。

优点 自刹作用:鼓式刹车有良好的自刹作用,由于刹车来令片外张,车轮旋转连带着外张的刹车鼓扭曲一个角度(当然不会大到让你很容易看得出来)刹车来令片外张力(刹车制动力)越大,则情形就越明显,因此,一般大型车辆还是使用鼓式刹车,除了成本较低外,大型车与小型车的鼓刹,差别可能祗有大型采气动辅助,而小型车采真空辅助来帮助刹车。 成本较低:鼓式刹车制造技术层次较低,也是最先用于刹车系统,因此制造成本要比碟式刹车低。

缺点 由于鼓式刹车刹车来令片密封于刹车鼓内,造成刹车来令片磨损后的碎削无法散去,影响刹车鼓与来令片的接触面而影响刹车性能。鼓刹最大的缺点是下雨天沾了雨水后 会打滑,造成刹车失灵这才是其最可怕的 领从蹄式制动器 增势与减势作用,设汽车前进时制动鼓旋转方向(这称为制动鼓正向旋转)。制动蹄1的支承点3在其前端,制动轮缸6所施加的促动力作用于其后端,因而该制动蹄张开时的旋转方向与制动鼓的旋转方向相同。具有这种属性的制动蹄称为领蹄。与此相反,制动蹄2的支承点4在后端,促动力加于其前端,其张开时的旋转方向与制动鼓的旋转方向相反。具有这种属性的制动蹄称为从蹄。当汽车倒驶,即制动鼓反向旋转时,蹄1变成从蹄,而蹄2则变成领蹄。这种在制动鼓正向旋转和反向旋转时,都有一个领蹄和一个从蹄的制动器即称为领从蹄式制动器。 制动时两活塞施加的促动力是相等的。因此在制动过程中对制动鼓产生一个附加的径向力。凡制动鼓所受来自二蹄的法向力不能互相平衡的制动器称为非平衡式制动器。 单向双领蹄式制动器 在制动鼓正向旋转时,两蹄均为领蹄的制动器称为双领蹄式制动器,其结构示意图如右图所示。 双领蹄式制动器与领从蹄式制动器在结构上主要有两点不相同,一是双领蹄式制动器的两制动蹄各用一个单活塞式轮缸,而领从蹄式制动器的两蹄共用一个双活塞式轮缸;二是双领蹄式制动器的两套制动蹄、制动轮缸、支承销在制动底板上的布置是中心对称的,而领从蹄式制动器中的制动蹄、制动轮缸、支承销在制动底板上的布置是轴对称布置的。 双向双领蹄式制动器 无论是前进制动还是倒车制动,两制动蹄都是领蹄的制动器称为双向双领蹄式制动器,图5-42是其结构示意图器。与领从蹄式制动器相比,双向双领蹄式制动器在结构上有三个特点,一是采用两个双活塞式制动轮缸;二是两制动蹄的两端都采用浮式支承,且支点的周向位置也是浮动的;三是制动底板上的所有固定元件,如制动蹄、制动轮缸、回位弹簧等都是成对的,而且既按轴对称、又按中心对称布置。 双从蹄式制动器 前进制动时两制动蹄均为从蹄的制动器称为双从蹄式制动器,其结构示意图见图5-44。这种制动器与双领蹄式制动器结构很相似,二者的差异只在于固定元件与旋转元件的相对运动方向不同。虽然双从蹄式制动器的前进制动效能低于双领蹄式和领从蹄式制动器,但其效能对摩擦系数变化的敏感程度较小,即具有良好的制动效能稳定性。 双领蹄、双向双领蹄、双从蹄式制动器的固定元件布置都是中心对称的。如果间隙调整正确,则其制动鼓所受两蹄施加的两个法向合力能互相平衡,不会对轮毂轴承造成附加径向载荷。因此,这三种制动器都属于平衡式制动器。 单向自增力式制动器 单向自增力式制动器的结构原理见右图。第一制动蹄1和第二制动蹄2的下端分别浮支在浮动的顶杆6的两端。 汽车前进制动时,单活塞式轮缸将促动力FS1加于第一蹄,使其上压靠到制动鼓3上。第一蹄是领蹄,并且在各力作用下处于平衡状态。顶杆6是浮动的,将与力S1大小相等、方向相反的促动力FS2施于第二蹄。故第二蹄也是领蹄。作用在第一蹄上的促动力和摩擦力通过顶杆传到第二蹄上,形成第二蹄促动力FS2。对制动蹄1进行受力分析可知,FS2>FS1。此外,力FS2对第二蹄支承点的力臂也大于力FS1对第一蹄支承的力臂。因此,第二蹄的制动力矩必然大于第一蹄的制动力矩。倒车制动时,第一蹄的制动效能比一般领蹄的低得多,第二蹄则因未受促动力而不起制动作用。 双向自增力式制动器 双向自增力式制动器的结构原理如图5-47所示。其特点是制动鼓正向和反向旋转时均能借蹄鼓间的摩擦起自增力作用。它的结构不同于单向自增力式之处主要是采用双活塞式制动轮缸4,可向两蹄同时施加相等的促动力FS。制动鼓正向(如箭头所示)旋转时,前制动蹄1为第一蹄,后制动蹄3为第二蹄;制动鼓反向旋转时则情况相反。在制动时,第一蹄只受一个促动力FS而第二蹄则有两个促动力FS和S,且S>FS。考虑到汽车前进制动的机会远多于倒车制动,且前进制动时制动器工作负荷也远大于倒车制动,故后蹄3的摩擦片面积做得较大。 凸轮式制动器 目前,所有国产汽车及部分外国汽车的气压制动系统中,都采用凸轮促动的车轮制动器,而且大多设计成领从蹄式。 制动时,制动调整臂在制动气室6的推杆作用下,带动凸轮轴转动,使得两制动蹄压靠到制动鼓上而制动。由于凸轮轮廓的中心对称性及两蹄结构和安装的轴对称性,凸轮转动所引起的两蹄上相应点的位移必然相等。 这种由轴线固定的凸轮促动的领从蹄式制动器是一种等位移式制动器,制动鼓对制动蹄的摩擦使得领蹄端部力图离开制动凸轮,从蹄端部更加靠紧凸轮。因此,尽管领蹄有助势作用,从蹄有减势作用,但对等位移式制动器而言,正是这一差别使得制动效能高的领蹄的促动力小于制动效能低的从蹄的促动力,从而使得两蹄的制动力矩相等。 楔式制动器 楔式制动器中两蹄的布置可以是领从蹄式。作为制动蹄促动件的制动楔本身的促动装置可以是机械式、液压式或气压式。 两制动蹄端部的圆弧面分别浮支在柱塞3和柱塞6的外端面直槽底面上。柱塞3和6的内端面都是斜面,与支于隔架5两边槽内的滚轮4接触。制动时,轮缸活塞15在液压作用下推使制动楔13向内移动。后者又使二滚轮一面沿柱塞斜面向内滚动,一面推使二柱塞3和6在制动底板7的孔中外移一定距离,从而使制动蹄压靠到制动鼓上。轮缸液压一旦撤除,这一系列零件即在制动蹄回位弹簧的作用下各自回位。导向销1和10用以防止两柱塞转动。 鼓式制动器小结 以上介绍的各种鼓式制动器各有利弊。就制动效能而言,在基本结构参数和轮缸工作压力相同的条件下,自增力式制动器由于对摩擦助势作用利用得最为充分而居首位,以下依次为双领蹄式、领从蹄式、双从蹄式。但蹄鼓之间的摩擦系数本身是一个不稳定的因素,随制动鼓和摩擦片的材料、温度和表面状况(如是否沾水、沾油,是否有烧结现象等)的不同可在很大范围内变化。自增力式制动器的效能对摩擦系数的依赖性最大,因而其效能的热稳定性最差。 在制动过程中,自增力式制动器制动力矩的增长在某些情况下显得过于急速。双向自增力式制动器多用于轿车后轮,原因之一是便于兼充驻车制动器。单向自增力式制动器只用于中、轻型汽车的前轮,因倒车制动时对前轮制动器效能的要求不高。双从蹄式制动器的制动效能虽然最低,但却具有最良好的效能稳定性,因而还是有少数华贵轿车为保证制动可靠性而采用(例如英国女王牌轿车)。领从蹄制动器发展较早,其效能及效能稳定性均居于中游,且有结构较简单等优点,故目前仍相当广泛地用于各种汽车。

ABS防抱制动系统由汽车微电脑控制,当车辆制动时,它能使车轮保持转动,从而帮助驾驶员控制车辆达到安全的停车。这种防抱制动系统是用速度传感器检测车轮速度,然后把车轮速度信号传送到微电脑里,微电脑根据输入车轮速度。

通过重复地减少或增加在轮子上的制动压力来控制车轮的打滑率,保持车轮转动。在制动过程中保持车轮转动,不但可保证控制行驶方向的能力,而且,在大部分路面情况下,与抱死〔锁死〕车轮相比,能提供更高的制动力量。

磁感应式车轮转速传感器

由传感器外壳、永久磁铁、感应线圈和磁极组成转速信号探头,与车轮一起旋转的齿圈则为产生感应信号的触发转子。

车轮转动时,磁极端部的间隙随齿圈的转动而发生周期性的变化(或者说是齿圈的齿切割了磁力线),使穿过感应线圈的磁通量随之变化,感应线圈便产生了与车轮转速相对应的交变电压信号。

文章标签: # 制动 # 系统 # 制动器